A representative from Calyos will reach out to you to plan an introductory web call where they will explain how our technology works and demonstrate the applications and benefits of it.
Paper
Location:
DATE:
Flat-plate pulsating heat pipe for three-dimensional thermal spreader
On the 22nd of June, Naoko Iwata presented a research paper on pulsating heat pipes at the UIT International Conference in Gaeta, Italy. The paper is a collaboration between the University of Parma and Calyos and was completed over the last four Months and is part of the POTPLOS (Performance Optimisation of Two-Phase Passive Loop System) project funded by the EU Horizon program.
Calyos was responsible for design and production of the pulsating heat pipe solution. The final design was produced using 3D printing. The University of Palma undertook an extensive test campaign to fully evaluate the performance of the device.
People:
Naoko Iwata - University of Parma
Fabio Bozzoli - University of Parma
Flavio Accorinti - Calyos
Vincent Dupont - Calyos
Antoine de Ryckel - Calyos
Abstract:
A common thermal management solution for miniaturized electronic devices with high heat flux values is to integrate the heat spreader and the heat sink so that the forced or free convection is promoted. Taking advantages of thin and wickless simple structure of Pulsating Heat Pipes (PHPs), several studies proposed flat-plate PHPs for this application. In most of the PHP studies, the evaporator and the condenser are located at both ends the PHP. However, in many practical cases, the PHP configuration could be different: it could be used as to spread a centrally located heat source in a three-dimensional direction, achieving high temperature uniformity in a limited space. In the present study, in order to investigate this particular configuration with the evaporator in the centre, a flat-plate PHP is proposed for spreading heat of electronic devices with high heat flux up to 50 W/cm2 and its thermal performance experimentally investigated is shown. Methanol was charged as the working fluid. As the result of changing the filling ratio, the optimum filling ratio was estimated between 59 – 39 %. The thermal performance was evaluated with in four orientations. The thermal resistance in every orientation was less than on-half of that of the empty PHP. The results shown in this work could contribute to improve thermal management of the electronics generating high-heat flux by proposing an innovative heat spreader.
This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 894750.
The paper will be available for download later this year.
Further reading:
POTPLOSWho We Are
Calyos is a leader in the design and manufacture of two-phase thermal management systems. Building on our heritage from Euro Heat Pipes (EHP) and their space technology expertise, we specialize in innovative cooling solutions that tackle the thermal challenges of tomorrow.
What We Do
We engineer advanced cooling technologies, including loop heat pipes, micro-channel heat pipes, and pulsating heat pipes, to optimize thermal performance across a variety of applications. Typically these include: power electronics, processors, and batteries, but we don't stop there we are continuing to develop and produce fully customizable solutions for other specific needs, for example e-motors and fuel cells.
Where We Operate
Calyos is headquartered in Charleroi, Belgium, where our engineering and production teams work side by side in a state-of-the-art facility. From this base, we serve a global clientele, providing our cutting-edge solutions across North America, Asia, Europe, and South America.
When We Started
Calyos was incorporated in 2014 as a spin-off from Euro Heat Pipes (EHP), which was established in 2001 and has become a major player in the European satellite market. Since then, Calyos has been adapting and evolving EHP's space-grade cooling technologies for terrestrial applications.
Why We Matter
Our mission is to lead the industry towards adopting the most effective and sustainable thermal management solutions. We aim to address the most pressing thermal challenges in the data-driven and electrified environments of today, leveraging passive cooling technologies to achieve superior efficiency and environmental stewardship.
How We Succeed
Our success is driven by our commitment to four core values:
1. Applied Knowledge - Transforming deep technical expertise into market-ready solutions.
2. Better Together - Emphasizing collaboration with all stakeholders to enhance our collective success.
3. Inherent Flexibility - Adapting our solutions and practices to keep pace with evolving market demands.
4. Continuous Research - Persistently innovating to maintain our leadership in thermal technology.
Ben Sutton
Marketing & Business Development Manager